Synthesis of 6-Quinoxalinyldihydropyrazolo[1,5-a]pyrimidin-7-ones by a Ring Transformation. Tautomeric Structure of Dihydropyrazolo[1,5-a]pyrimidin-7-ones in a Solution [1].

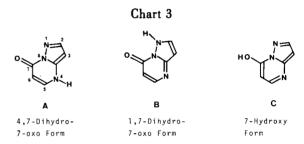
Yoshihisa Kurasawa*, Ho Sik Kim [2] and Atsushi Takada

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

Yoshihisa Okamoto

Division of Chemistry, College of Liberal Arts and Sciences, Kitasato University, Kitasato, Sagamihara, Kanagawa 228, Japan Received April 27, 1990

The reaction of 3-(N,N-dimethylcarbamoyl)furo[2,3-b]quinoxaline hydrochloride 1 with the 5-aminopyrazoles 6a-e gave 6-quinoxalinyldihydropyrazolo[1,5-a]pyrimidin-7-ones 7a-e, respectively. Compounds 7a-e were found to predominate as the 4,7-dihydro-7-oxo form in a solution based on the NOE data.


J. Heterocyclic Chem., 27, 2203 (1990).

In previous papers [3-6], we reported that the reaction of 3-(N,N-dimethylcarbamoyl)furo[2,3-b]quinoxaline hydrochloride 1 with hydrazines, 2-aminopyridine, o-phenylenediamine hydrochloride and ethyl cyanoacetate resulted in ring transformation to give compounds 2-5, respectively (Chart 1). In continuation of these works, we studied the

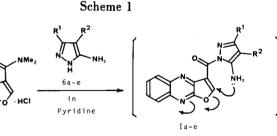

Chart 1

Chart 2

ring transformation of 1 with the 5-aminopyrazoles 6a-e in the present investigation, because it was interesting to clarify whether this ring transformation produced the 6-quinoxalinyldihydropyrazolo[1,5-a]pyrimidin-7-ones 7a-e or 6-quinoxalinyldihydropyrazolo[1,5-a]pyrimidin-5ones 8a-e (Chart 2). Moreover, it was important to determine either tautomeric structure of 7a-e or 8a-e in a solution, because there were few papers concerning the tauto-

meric structure of dihydropyrazolo[1,5-a]pyrimidin-7-ones [7] and dihydropyrazolo[1,5-a]pyrimidin-5-ones [8] in solution. The nmr spectral data of the products manifested that the above ring transformation furnished the 6-quin-

- $R^2 = CN$

NOE

oxalinyldihydropyrazolo[1,5-a]pyrimidin-7-ones 7a-e (Scheme 1), which existed as the 4,7-dihydro-7-oxo form A in solution (Chart 3). This paper describes the synthesis of 6-quinoxalinyldihydropyrazolo[1,5-a]pyrimidines 7a-e and their tautomeric structure in solution together with the antifungal screening data of 7a-e.

The reaction of 1 with the 5-amino-1H-pyrazoles 6a-e in the presence of pyridine gave the 6-quinoxalinyldihydropyrazolo[1,5-a]pyrimidin-7-ones 7a-e presumably via intermediates Ia-e, respectively (Scheme 1). The formation of intermediates Ia-e may be supported by the results that the reaction of 1 with the 5-amino-1-methylpyrazoles 9 does not afford 3-[N-(1-methylpyrazol-5-yl)carbamovl]furo-[2,3-b]quinoxalines 10, but recovered the free base of 1. Moreover, the NOE data between the N₄-H and C₅-H protons of 7a-e ascertained the formation of intermediates Iae and the tautomeric structure of the 4,7-dihydro-7-oxo form A (Table 1, Chart 3). The N₄-H and N₄-H proton signals of 7a-d appeared in the same magnetic field, and hence the radiation at the NH proton signal showed the NOE to both the C₅-H and C₅-H proton signals (Table 1). The signals due to the C2-C7, C2 and C3 carbons were easily assigned from the ¹H-¹³C coupling constant and ¹H-¹³C COSY spectral data in compounds 7a-d (Table 2).

Table 1 NOE Data for Compounds 7a-e

Radiation	NOE	7a	7b	7c	7 d	7e
N ₄ -H N _{4'} -H	C ₅ -H C _{5'} -H	3.7 5.1	5.5 8.2	3.5 5.8	2.3 3.6	2.5 [a] 4.2

[a] Expressed in %.

Table 2 ¹³C-NMR Spectral data for Compounds 7a-d [a]

Carbon	Compound 7a	Compound 7b	Compound 7c	Compound 7d
C ₂	143.46	145.38	143.42	145.73
C_3	89.96	76.31	95.57	76.34
C _{3a}	141.39	145.59	142.86	141.74
C ₅	140.45	142.33	141.28	141.74
C ₆	105.30	108.03	108.57	108.04
C ₇	154.86	154.16	154.00	154.41
C _{2'}	153.94	152.69	152.86	152.53
C _{3'}	154.31	154.16	154.19	154.03

[a] Measured in DMSO-d₆.

Hori and others [7] reported that the dihydropyrazolo-[1,5-a]pyrimidin-7-ones predominated as a mixture of the 1,7-dihydro-7-oxo form B and the 7-hydroxy form C (Chart 3) in the solid state. Although there have been few papers concerning the tautomeric structure of the dihydropyrazolo[1,5-a]pyrimidin-7-ones in solution, we have just clarified that the dihydropyrazolo[1,5-a]pyrimidin-7-ones 7a-e exist as the 4,7-dihydro-7-oxo form A in a solution (Scheme 2). Incidentally, our previous data [9] showed that the dihydropyrazolo[5,1-c] [1,2,4]triazin-4-ones 11 (Scheme 3) as an isostere of the dihydropyrazolo[1,5-a]pyrimidin-7ones 7 were predominant as the 4,6-dihydro-4-oxo form D. but not the 1,4-dihydro-4-oxo form E, in solution. These results indicate that the tautomeric structure is completely changed when a ring nitrogen atom is replaced with a carbon atom (Scheme 4).

Scheme 2

Scheme 3

4,7-Dihydro-7-oxo Form

Scheme 4

Table 3 Antifungal Activity of Compounds 7a-e

Compound	P.d.	R.s.	P.o. [b]
7a	16	_	
7ь	_	22	16
7c	74	14	
7d	23	11	12
7e	21	24	63

[a] Growth inhibition at a concentration of 100 ppm. [b] P.d.: Pythium debaryanum; R.s.: Rhizoctonia solani; P.o.: Pyricularia oryzae.

Compounds 7a-e showed a weak antifungal activity against Pythium debaryanum (P.d.), Rhizoctonia solani (R.s.) and Pyricularia solani (P.s.) (Table 3), but exhibited no antibacterial activity against Xanthomonas oryzae, Erwinia carotovara and Pseudomonas lachrmans.

EXPERIMENTAL

All melting points were determined on a Ishii melting point apparatus and are uncorrected. The ir spectra (potassium bromide) were recorded with a JASCO IRA-1 spectrophotometer. The nmr spectra were measured in deuteriodimethylsulfoxide with a VXR-300 spectrometer at 300 MHz. Chemical shifts are given in the δ scale. The mass spectra (ms) were determined with a JEOL JMS-01S spectrometer. Elemental analyses were performed on a Perkin-Elmer 240B instrument.

6-(3-Oxo-3,4-dihydroquinoxalin-2-yl)-4,7-dihydropyrazolo[1,5-a]-pyrimidin-7-one **7a**, 6-(3-Oxo-3,4-dihydroquinoxalin-2-yl)-3-cyano-4,7-dihydropyrazolo[1,5-a]pyrimidin-7-one **7b** and 6-(3-Oxo-3,4-dihydroquinoxalin-2-yl)-3-cyano-2-methyl-4,7-dihydropyrazolo[-1,5-a]pyrimidin-7-one **7d**.

General Procedure.

A suspension of 1 (5 g, 18.0 mmoles) and the appropriate pyrazole 6a (2.24 g), 6b (2.92 g) or 6d (3.29 g) (27.0 mmoles, 1.5-fold) in pyridine (5 ml)/1-butanol (200 ml) was refluxed in an oil bath for 2 hours to precipitate yellow needles 7a, brick red needles 7b or orange needles 7d, respectively, which were collected by suction filtration. Trituration with hot ethanol gave analytically pure samples, yields: 7a (3.31 g, 66%), 7b (4.45 g, 81%), 7d (4.03 g, 70%).

Compound 7a had mp above 310°; ir: ν cm⁻¹ 3280, 3220, 1675, 1605; ms: m/z 279 (M*); pmr: 12.50 (s, 2H, N₄-H and N₄-H), 8.32 (s, 1H, C₅-H), 7.96 (d, J = 2.0 Hz, 1H, C₂-H), 7.81-7.28 (m, 4H, aromatic), 6.29 (d, J = 2.0 Hz, 1H, C₃-H).

Anal. Calcd. for C₁₄H₉N₅O₂: C, 60.21; H, 3.25; N, 25.08. Found: C, 60.21; H, 3.45; N, 25.26.

Compound 7b had mp above 310°; ir: ν cm⁻¹ 3100, 3020, 2230, 1670, 1650; ms: m/z 304 (M*); pmr: 12.60 (s, 2H, N₄-H and N₄-H), 8.44 (s, 2H, C₅-H and C₂-H), 7.82-7.30 (m, 4H, aromatic).

Anal. Calcd. for $C_{15}H_8N_6O_2$: C, 59.21; H, 2.65; N, 27.62. Found: C, 59.01; H, 2.87; N, 27.38.

Compound 7d had mp above 310°; ir: ν cm⁻¹ 3170, 3120, 3060, 2230, 1680, 1670; ms: m/z 318 (M*); pmr: 12.53 (s, 2H, N₄-H and N₄-H), 8.44 (s, 1H, C₅-H), 7.82-7.29 (m, 4H, aromatic), 2.43 (s, 3H, CH₃).

Anal. Calcd. for $C_{16}H_{10}N_6O_2$: C, 60.38; H, 3.17; N, 26.40. Found: C, 60.10; H, 3.16; N, 26.13.

6-(3-Oxo-3,4-dihydroquinoxalin-2-yl)-3-ethoxycarbonyl-4,7-dihydropyrazolo[1,5-a]pyrimidin-7-one 7c and 6-(3-Oxo-3,4-dihydro-

quinoxalin-2-yl)-2-amino-3-methoxycarbonyl-4,7-dihydropyra-zolo[1,5-a]pyrimidin-7-one 7e.

General Procedure.

A solution of 1 (5 g, 18.0 mmoles) and the pyrazole 6c (4.19 g) or 6e (4.21 g) (27.0 mmoles, 1.5-fold) in pyridine (5 ml)/N,N-dimethylformamide (100 ml) was refluxed in an oil bath for 3 hours. Evaporation of the solvent in vacuo afforded yellow crystals 7c or 7e, respectively, which were triturated with ethanol and then collected by suction filtration. Recrystallization from N,N-dimethylformamide/ethanol afforded yellow needles 7c (4.54 g, 74%) or 7e (2.10 g, 32%).

Compound 7c had mp above 310°; ir: ν cm⁻¹ 3260, 1680; ms: m/z 351 (M⁺); pmr: 12.55 (s, 2H, N₄-H and N₄-H), 8.30 (s, 1H, C₅-H), 8.27 (s, 1H, C₂-H), 7.79-7.33 (m, 4H, aromatic), 4.34 (q, J = 7 Hz, 2H, CH₂), 1.34 (t, J = 7 Hz, 3H, CH₃).

Anal. Calcd. for $C_{17}H_{13}N_5O_4$: C, 58.12; H, 3.73; N, 19.94. Found: C, 58.07; H, 3.75; N, 19.83.

Compound 7e had mp 295-297°; ir: ν cm⁻¹ 3440, 1650; ms: m/z 352 (M⁺); pmr: 12.49 (s, 1H, N₄-H), 12.12 (s, 1H, N₄-H), 8.05 (s, 1H, C₅-H), 7.82-7.29 (m, 4H, aromatic), 6.07 (s, 2H, NH₂), 3.83 (s, 3H, CH₃).

Anal. Calcd. for $C_{16}H_{12}N_6O_4\cdot\frac{1}{2}H_2O$: C, 53.19; H, 3.63; N, 23.26. Found: C, 53.43; H, 3.82; N, 23.43.

Acknowledgement.

We wish to thank Nissan Chemical Industries, Ltd. (Funabashi, Chiba, Japan) for the screening tests of compounds 7a-e.

REFERENCES AND NOTES

- [1] Preliminary paper: Y. Kurasawa, H. S. Kim, R. Futatsukawa, C. Watanabe, A. Takada and Y Okamoto, J. Heterocyclic Chem., 26, 1159 (1989).
- [2] Present address: Department of Chemistry, Teacher's College, Hyosung Women's University, Gyongsan 713-900, Korea.
- [3] Y. Kurasawa and A. Takada, Heterocycles, 14, 281 (1980); idem, Chem. Pharm. Bull., 29, 2871 (1981).
- [4] Y. Kurasawa and A. Takada, Heterocycles, 14, 611 (1980); idem, Chem. Pharm. Bull., 28, 3537 (1980).
- [5] Y. Kurasawa, J. Sato, M. Ogura, Y. Okamoto and A. Takada, Heterocycles, 22, 1531 (1984); Y. Kurasawa, Y Okamoto and A. Takada, J. Heterocyclic Chem., 22, 661 (1985).
- [6] Y. Kurasawa, Y. Nemoto, A. Sakakura, M. Ogura and A. Takada, Synthesis, 1029 (1983); idem, Chem. Pharm. Bull., 32, 3366 (1984).
- [7] I. Hori, K. Saito and H. Midorikawa, Bull. Chem. Soc. Japan, 43, 849 (1970).
 - [8] J. B. Wright, J. Heterocyclic Chem., 6, 947 (1969).
- [9] Y. Kurasawa, K. Kamigaki, H. S. Kim, K. Yonekura, A. Takada and Y. Okamoto, J. Heterocyclic Chem., 26, 869 (1989).